
I2A: Notes to go with “slides 1” & “slides 2”
Richard Bornat, January 1998

Because there is no set book (at the time of writing I’m not sure when the book will be published in the
UK), I’m taking the unusual step of writing some notes to go with the first batch of slides. With luck, the
book will be available within a week.

Introduction
This course is about small programs, examined very closely, about beauty found in unexpected places,
about general solutions, and about measuring the amount of work a computer can do in a particular
amount of time or space. We shall start with very simple problems, and find much more than you might
expect in them. We are often going to deal with very fine distinctions, which the non-specialist, the non-
computer-scientist, might think irrelevant. We can’t apologise for that: it’s the essence of our subject.
The course is about ‘analytical programming’; it’s useful because it introduces you to a lot of ways of
thinking about programs which you haven’t written yet; it’s interesting because it gets you quite quickly
to areas where surprisingly little is known; it’s hard, and it’s interesting because it is hard.
For that reason we shall have time to look at only two problems:

• sorting;
• searching.

The slides will contain ‘side notes’, which are points intended to provoke reflection and argument.
Reflective learning is, apparently, much more efficient than rote learning.
If you want to read around the material in this course, any book with “algorithms” in the title would be
appropriate – especially those by Weiss and Sedgewick, recommended last year and mentioned on the
course information sheet, because the C++/Java differences aren’t too great to begin with. Some books on
“specification” might help, but many will be a little too detailed and/or technical. Books about on the
specification notation Z will help with predicate calculus, but only after you have done a little set theory
in the IDS course.

Correctness matters more than efficiency
Obviously it does – who wants a fast program that doesn’t work? But which should we concentrate on
first: correctness or efficiency?
In the Landin diagram (see slides) route cd takes us first to a fast program which doesn’t work – usually
to one which works some of the time – and then tries to iron out the bugs or extend the range. Route ab
takes us first to a slow program which works everywhere, and then tries to refine the bits which slow the
program down.
Route ab is better because:

• speeding a program up makes it more complicated – that makes it harder to find bugs on
leg d than on a;

• you never need to speed up every bit of the program – but until it’s working you don’t
know which bits you must work on and which you can ignore, which makes leg b shorter
than c.

So I shall continue to emphasise correctness whenever it is possible to do so. And in tests we shall ask as
many questions about correctness as about efficiency, or perhaps even more.

Some properties of specifications
1. They are conditional, hypothetical, A B! remarks - if the input is like this then the output must be
like that. A washing machine is specified to wash your clothes if it is supplied with electricity, water,
soap (and clothes), and not otherwise. If you don’t plug it in, it won’t work – and that’s ok.

2. Read strictly, a specification says nothing about what should happen if you give input that doesn’t
correspond to its pre-conditions. In those circumstances the machine/program can do anything at all and
still satisfy the specification.

2a. In technical language, specifications are satisfied or not satisfied.
2b. A program might even blow up the computer if you give it the wrong input (we shall try
not to write programs which are so silly, but things like that happen and are allowed
according to the meaning of ‘specification’).

3. A specification gives a minimum requirement, which a particular program can exceed and yet still
satisfy the specification. Our algorithms might do their work and at the same time record some statistics –
unless the specification prohibits that, it’s ok.

3a. If a washing machine magically worked even though it wasn’t connected to the electricity,
would you complain? I wouldn’t. It would be exceeding its specification.
3b. I might complain if it telephoned MI5 and told them what I was washing, though.

4. A specification is independent of a program. We shall see several sorting algorithms, in various
versions, all of which can be claimed to satisfy our specification.
5. A specification is always more or less mathematical, but it isn’t always written in mathematical
notation.

5a. Logical notation is a kind of mathematical notation. Learn to use the word ‘notation’.
5b. English isn’t a kind of mathematical notation, but sometimes it’s the best we can do.
5c. Pictures are often the best specifications.

6. Miranda programs are more concise than (and perhaps more mysterious than) Java programs, so
sometimes we can write a Miranda program to stand as the specification of a Java program.

6a. We can make chains of specifications in this way. A Java program might specify an
assembly-language program, a Miranda program might specify the Java program, there might
be a higher-level program which specified a Miranda program, and so on.

7. We might hope to prove that our programs satisfy their specifications (but we won’t do that in this
course).

7a. We can’t hope to prove that our specifications describe the algorithm we are thinking
about – and that’s a major problem with the mathematical approach.
7b. Our specifications don’t always say “and that’s all there is to say”, which can be a
problem if our programs have extra, unspecified, undesirable, effects.

Calculating costs of assignment
We are going to use as a model of a computing machine the sort of machine described in the CS1 course.
But to keep every action of the machine out in the open, I’m going to outlaw ‘register offset’ addressing -
stuff like r2(7) or sp(-6), because each of those means a hidden addition operation, and we can’t
have any hidden operations.
But actually this detail doesn’t matter in the context of this course, because we make a major
simplification when assessing costs. All we need to know is that to execute A[i]=A[i-1] we will need
to do a bit of address manipulation (involving addition and subtraction), and a bit of moving (involving
store accesses). And then we know that modern computers are designed so that arithmetic and store
access are constant-time zero-space operations. For example, on a CS1-style machine the operation ADD
r1, r2 always takes the same amount of time no matter what numbers are in r1 and r2. Ditto for SUB,
DIV and MULT - arithmetic always takes the same amount of time no matter what the operands.

Speed-up of linear and quadratic programs
You should attempt, in the lab, to verify (or repudiate) claims made in the lectures about execution times,
speedups and the like.

